Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(41): 48574-48583, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37811661

RESUMO

Surface-tethered polymers have been shown to be an efficient lubrication strategy for boundary and mixed lubrication by providing a solvated film between solid surfaces. We have assessed the performance of various graft copolymers as friction modifier additives in oil and revealed important structure-property relationships for this application. The polymers consisted of an oil-soluble, grafted poly(lauryl acrylate) segment and a polar, linear poly(4-acryloylmorpholine) anchor group. Reversible addition-fragmentation chain transfer polymerization was used to access various architectures with control of the grafting density and position of the anchor group. Macrotribological studies displayed promising results with ≈50% reduction in friction coefficient at low polymer treatment rates. QCM-D experiments, neutron reflectometry, small-angle neutron scattering, and atomic force microscopy were used to gather detailed information on these polymers' surface adsorption characteristics, film structure, and solution behavior.

2.
J Colloid Interface Sci ; 574: 272-284, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32330753

RESUMO

Over recent years, there has been a rapid development of membrane-mimetic systems to encapsulate and stabilize planar segments of phospholipid bilayers in solution. One such system has been the use of amphipathic copolymers to solubilize lipid bilayers into nanodiscs. The attractiveness of this system, in part, stems from the capability of these polymers to solubilize membrane proteins directly from the host cell membrane. The assumption has been that the native lipid annulus remains intact, with nanodiscs providing a snapshot of the lipid environment. Recent studies have provided evidence that phospholipids can exchange from the nanodiscs with either lipids at interfaces, or with other nanodiscs in bulk solution. Here we investigate kinetics of lipid exchange between three recently studied polymer-stabilized nanodiscs and supported lipid bilayers at the silicon-water interface. We show that lipid and polymer exchange occurs in all nanodiscs tested, although the rate and extent differs between different nanodisc types. Furthermore, we observe adsorption of nanodiscs to the supported lipid bilayer for one nanodisc system which used a polymer made using reversible addition-fragmentation chain transfer polymerization. These results have important implications in applications of polymer-stabilized nanodiscs, such as in the fabrication of solid-supported films containing membrane proteins.

3.
Angew Chem Int Ed Engl ; 54(41): 11952-5, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26331292

RESUMO

Gram-negative bacteria are an increasingly serious source of antibiotic-resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir-Blodgett and Langmuir-Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/química , Escherichia coli/química , Escherichia coli/citologia , Bicamadas Lipídicas/química , Fosfolipídeos/química , Antibacterianos/farmacologia , Descoberta de Drogas , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Membranas Artificiais , Modelos Moleculares
4.
Angew Chem Weinheim Bergstr Ger ; 127(41): 12120-12123, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27346898

RESUMO

Gram-negative bacteria are an increasingly serious source of antibiotic-resistant infections, partly owing to their characteristic protective envelope. This complex, 20 nm thick barrier includes a highly impermeable, asymmetric bilayer outer membrane (OM), which plays a pivotal role in resisting antibacterial chemotherapy. Nevertheless, the OM molecular structure and its dynamics are poorly understood because the structure is difficult to recreate or study in vitro. The successful formation and characterization of a fully asymmetric model envelope using Langmuir-Blodgett and Langmuir-Schaefer methods is now reported. Neutron reflectivity and isotopic labeling confirmed the expected structure and asymmetry and showed that experiments with antibacterial proteins reproduced published in vivo behavior. By closely recreating natural OM behavior, this model provides a much needed robust system for antibiotic development.

5.
J Colloid Interface Sci ; 418: 140-6, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24461829

RESUMO

The adsorption of the surfactant Aerosol-OT (AOT) at the calcite-water interface has been investigated using batch adsorption isotherms and neutron reflection. The adsorption isotherms showed that NaAOT adsorption followed S-type adsorption behaviour with a maximum surface excess of 2.5 mg m(-2) but the method could not be used for the investigation of Ca(AOT)2 adsorption owing to the changes in the bulk phase behaviour of the solution. The surface excess, determined by neutron reflection at the critical micelle concentration (CMC), was 2.5 mg m(-2) for Ca(AOT)2 and 1.8 mg m(-2) for NaAOT. The time dependence of the NaAOT adsorption suggests a slow conversion from the sodium to the calcium salt of AOT at the calcite-water interface by binding calcium ions released from the slightly soluble calcite. The layer thickness in both cases was 35 Å which indicates adsorption as bilayers or distorted micelles. At higher concentrations of NaAOT (~10× CMC) adsorption of an AOT lamellar phase was evident from Bragg peaks in the specular reflection. To our knowledge, this is the first time that adsorption of a surfactant at the calcite-water interface has been investigated by neutron reflection. The technique provided significant new insight into the adsorption behaviour of AOT which would not have been accessible using traditional techniques.

6.
Phys Chem Chem Phys ; 14(39): 13569-79, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22955734

RESUMO

The plant defence proteins α1- and α2-purothionin (Pth) are type 1 thionins from common wheat (Triticum aestivum). These highly homologous proteins possess characteristics common amongst antimicrobial peptides and proteins, that is, cationic charge, amphiphilicity and hydrophobicity. Both α1- and α2-Pth possess the same net charge, but differ in relative hydrophobicity as determined by C18 reversed phase HPLC. Brewster angle microscopy, X-ray and neutron reflectometry, external reflection FTIR and associated surface pressure measurements demonstrated that α1 and α2-Pth interact strongly with condensed phase 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) monolayers at the air/liquid interface. Both thionins disrupted the in-plane structure of the anionic phospholipid monolayers, removing lipid during this process and both penetrated the lipid monolayer in addition to adsorbing as a single protein layer to the lipid head-group. However, analysis of the interfacial structures revealed that the α2-Pth showed faster disruption of the lipid film and removed more phospholipid (12%) from the interface than α1-Pth. Correlating the protein properties and lipid binding activity suggests that hydrophobicity plays a key role in the membrane lipid removal activity of thionins.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Fosfolipídeos/química , Proteínas de Plantas/química , Adsorção , Ânions/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Tamanho da Partícula , Propriedades de Superfície
7.
J Biol Chem ; 287(1): 337-346, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22081604

RESUMO

Proteins that translocate across cell membranes need to overcome a significant hydrophobic barrier. This is usually accomplished via specialized protein complexes, which provide a polar transmembrane pore. Exceptions to this include bacterial toxins, which insert into and cross the lipid bilayer itself. We are studying the mechanism by which large antibacterial proteins enter Escherichia coli via specific outer membrane proteins. Here we describe the use of neutron scattering to investigate the interaction of colicin N with its outer membrane receptor protein OmpF. The positions of lipids, colicin N, and OmpF were separately resolved within complex structures by the use of selective deuteration. Neutron reflectivity showed, in real time, that OmpF mediates the insertion of colicin N into lipid monolayers. This data were complemented by Brewster Angle Microscopy images, which showed a lateral association of OmpF in the presence of colicin N. Small angle neutron scattering experiments then defined the three-dimensional structure of the colicin N-OmpF complex. This revealed that colicin N unfolds and binds to the OmpF-lipid interface. The implications of this unfolding step for colicin translocation across membranes are discussed.


Assuntos
Colicinas/química , Colicinas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Difração de Nêutrons , Porinas/metabolismo , Detergentes/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Modelos Moleculares , Fosfatidilgliceróis/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...